z-logo
Premium
Influence of erodent particle types on solid particle erosion of polyphenylene sulphide composite under low particle speed
Author(s) -
Sari Nejat Y.
Publication year - 2009
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20709
Subject(s) - materials science , particle (ecology) , composite material , composite number , erosion , particle size , scanning electron microscope , bead , contact angle , aluminium , oxide , aluminum oxide , metallurgy , chemical engineering , paleontology , oceanography , engineering , geology , biology
The influence of erodent particle types on solid particle erosion of randomly oriented short glass fiber and mineral particle reinforced polyphenylene sulphide (PPS) was investigated. The solid particle erosion studies were carried out using low speed solid particle erosion test rig with 150 to 212‐μm brown fused aluminum oxide (Al 2 O 3 ), 150 to 200‐μm silica sand and 150 to 250‐μm glass bead. Glass bead eroding particles appear spherical in shape whereas aluminum oxide and silica sand eroding particles have sharp and angular edges. The erosion tests were conducted at six different contact angles of 15, 30, 45, 60, 75, and 90°, respectively. The results showed a strong dependence of the eroding particle types on the erosive wear behavior of PPS composite. The peak erosion rate occurred at 45° contact angle for silica sand eroding particles while the peak erosion rate occurred at 30° contact angle for aluminum oxide and glass bead particles. The morphologies of eroded surfaces were characterized by the scanning electron microscopy. In case of aluminum oxide and silica sand, the erosive wear mechanism occurs firstly by the erosion of matrix, followed by the fracture of un‐supported fibers and their detachment; however, the erosive wear mechanism occurs different for glass bead particles. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here