Premium
Covalent addition of diethyltoluenediamines onto carbon nanotubes for composite application
Author(s) -
Wang Shiren,
Liang Richard,
Wang Ben,
Zhang Chuck
Publication year - 2009
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20654
Subject(s) - materials science , carbon nanotube , nanocomposite , composite material , epoxy , raman spectroscopy , surface modification , composite number , ultimate tensile strength , covalent bond , fourier transform infrared spectroscopy , gravimetric analysis , chemical engineering , organic chemistry , chemistry , physics , optics , engineering
Abstract Diethyltoluenediamines (DETDA) was grafted to single‐walled carbon nanotubes (SWNTs) through diazonium‐based addition for improving dispersion and interfacial bonding in SWNT/epoxy nanocomposites. Characterization results of Fourier Transformed Infrared spectroscopy and Raman spectroscopy validated covalent bonding between DETDA and carbon nanotubes. The degree of functionalization was about 4% based on thermo‐gravimetric analysis. Interfacial bonding strength was computed in the presence of chemical bonding and the computation results indicated that the interfacial shear strength in the presence of functionalized carbon nanotubes was significantly enhanced. The experimental test revealed that the tensile strength of nanocomposites was enhanced about 23% and Young's modulus about 25%, with 0.5 wt% loading of functionalized‐nanotubes. These considerable improvements further verified the load‐transfer enhancement in the functionalized‐SWNTs/epoxy nanocomposites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers