Premium
Preparation and mechanical properties of waterborne polyurethane/carbon nanotube composites
Author(s) -
Zhao CaiXia,
Zhang WeiDe,
Sun DongCheng
Publication year - 2009
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20609
Subject(s) - materials science , composite material , crystallinity , ultimate tensile strength , carbon nanotube , polyurethane , nanocomposite , composite number , scanning electron microscope , dispersion (optics) , transmission electron microscopy , nanotechnology , physics , optics
Waterborne polyurethane (WBPU) and multiwalled carbon nanotubes (CNTs) composite films with 0–4.0 wt% CNTs were prepared by ultrasonic dispersion of carboxylic acid‐functionalized CNTs in WBPU followed by emulsion casting process. The elongations at break of the WBPU/CNTs composites increase with the incorporation of CNTs. The tensile strength and crystallinity of the nanocomposite films with lower CNTs contents (<2 wt%) increase obviously; while the tensile strengths of the composites with more CNTs (≥2 wt%) decrease, in contrast to the pure PU film. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicated that the CNTs are uniformly dispersed in the composites incorporated with lower CNTs contents (≤1.5 wt%). However, aggregation of CNTs increased with increasing CNTs content in the WBPU/CNTs composites, causing the macrophase separation. The dispersion state of the CNTs affects the crystallinity of the PU matrix and the phase separation of the composites, which are two key factors to influence the mechanical properties of the WBPU/CNTs composites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers