Premium
Interfacial adhesion and molecular diffusion in melt lamination of wood sawdust/ebonite NR and EPDM
Author(s) -
Yamsaengsung W.,
Sombatsompop N.
Publication year - 2009
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20568
Subject(s) - materials science , composite material , ultimate tensile strength , diffusion , adhesion , physics , thermodynamics
Adhesion mechanisms and peel strengths of wood/ebonite NR‐EPDM laminates were investigated. Three different chemical coupling agents: namely; N‐(β aminoethyl)‐γ‐aminopropyl‐triethoxysilane (AAS), 3‐methacryloxypropyl trimethoxysilane (ACS), and Bis‐(3‐triethoxylpropyl) tetrasulfan (Si69) were introduced into the wood/NR composites to enhance an interaction between wood sawdust (SD) particles and NR molecules, and to improve the adhesion strength between the SD/NR and EPDM layers. The quantitative evidences were given to explain the changes in the adhesion or peel strengths of the SD/NR‐EPDM laminates through scanning electron microscopy with energy dispersive X‐ray analysis (SEM‐EDS). The experimental results indicated that the suitable cure time and cure temperature for SD/NR‐EPDM melt‐laminates were the tc 90 of SD/NR composites and 140°C, respectively. The Si69 coupling agent was found to be the most effective coupling agent as compared with AAS and ACS coupling agents. The Si69 of 0.5 wt% was recommended for the optimizations of the tensile modulus of the SD/NR composites and the peel strength of the SD/NR‐EPDM laminates. The diffusion level between the SD/NR and EPDM layers could be quantitatively substantiated by determining the sulfur content transfer from the SD/NR layer to the EPDM layer. The diffusion and entanglement of molecular chains from the SD/NR to the EPDM layer initiated the co‐crosslinking reaction which played an important role on the changes in the interfacial strength in the SD/NR‐EPDM melt‐laminates. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom