z-logo
Premium
Preparation and characterization of functionalized carbon nanotubes/poly(phthalazinone ether sulfone ketone)s composites
Author(s) -
Feng Xuebin,
Liao Gongxiong,
He Wei,
Sun Qingmin,
Jian Xigao,
Du Jinhong
Publication year - 2009
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20561
Subject(s) - materials science , carbon nanotube , thermogravimetric analysis , composite material , sulfone , scanning electron microscope , surface modification , raman spectroscopy , thermal stability , ether , fourier transform infrared spectroscopy , ultimate tensile strength , composite number , polymer chemistry , chemical engineering , organic chemistry , chemistry , physics , optics , engineering
Multiwalled carbon nanotubes (MWNT) were successfully functionalized with phthalazinone‐containing diamine (DHPZDA) groups by the amidation reaction. The morphologies and structures of the DHPZDA‐functionalized MWNT (MWNT‐DHPZDA) were characterized by scanning electron microscope, Fourier transform infrared, and Raman spectroscopy, revealing that the DHPZDA were covalently attached onto the surface of MWNT, and the weight gain due to the functionalization was determined by thermogravimetric analysis. The MWNT‐DHPZDA/poly(phthalazinone ether sulfone ketone)s (PPESK) composites with different filler content were prepared by the solution‐mixing method. MWNT‐DHPZDA can be uniformly dispersed in the matrix and the strong interfacial adhesion between two constituents was found, which resulted in obvious enhancements of the mechanical properties. For the composite with 1 wt% MWNT‐DHPZDA, the tensile strength and the Young's modulus are 102.1 and 1,974 MPa, about 1.65 and 1.72 times of the pure PPESK, respectively. Conductivity measurements indicate that a typical percolation transition behavior takes place for MWNT‐DHPZDA content in the range from 0.5 to 2 wt%. Additionally, introducing MWNT‐DHPZDA into PPESK is favorable to improvement of the thermal stability. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here