Premium
Tensile properties of carbon filled liquid crystal polymer composites
Author(s) -
Keith Jason M.,
King Julia A.,
Grant Peter W.,
Cole Andrew J.,
Klett Bryan M.,
Miskioglu Ibrahim
Publication year - 2008
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20339
Subject(s) - materials science , ultimate tensile strength , composite material , carbon black , graphite , composite number , carbon fibers , polymer , tensile testing , natural rubber
Electrically and thermally conductive resins can be produced by adding carbon fillers. Mechanical properties such as tensile modulus, ultimate tensile strength, and strain at ultimate tensile strength are vital to the composite performance in fuel cell bipolar plate applications. This research focused on performing compounding runs followed by injection molding and tensile testing of carbon filled Vectra A950RX liquid crystal polymer composites. The four carbon fillers investigated included an electrically conductive carbon black, thermocarb synthetic graphite particles, and two carbon fibers (Fortafil 243 and Panex 30). For each different filler type, resins were produced and tested that contained varying amounts of these single carbon fillers. The carbon fiber samples exhibited superior tensile properties, with a large increase in tensile modulus over the base polymer, and very low drop in the ultimate tensile strength as the filler volume fraction was increased. The strain at the ultimate tensile strength was least affected by the addition of the Panex carbon fiber but was significantly affected by the Fortafil carbon fiber. In general, composites containing synthetic graphite did not perform as well as carbon fiber composites. Carbon black composites exhibited poor tensile properties. POLYM. COMPOS., 29:15–21, 2008. © 2007 Society of Plastics Engineers