z-logo
Premium
Mechanical properties of injection molded long fiber polypropylene composites, Part 1: Tensile and flexural properties
Author(s) -
Kumar K. Senthil,
Ghosh Anup K.,
Bhatnagar Naresh
Publication year - 2007
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20298
Subject(s) - materials science , composite material , polypropylene , ultimate tensile strength , flexural strength , extrusion , fiber , molding (decorative) , compression molding , flexural modulus , injection moulding , glass fiber , volume fraction , izod impact strength test , mold
Innovative polymers and composites are broadening the range of applications and commercial production of thermoplastics. Long fiber‐reinforced thermoplastics have received much attention due to their processability by conventional technologies. This study describes the development of long fiber reinforced polypropylene (LFPP) composites and the effect of fiber length and compatibilizer content on their mechanical properties. LFPP pellets of different sizes were prepared by extrusion process using a specially designed radial impregnation die and these pellets were injection molded to develop LFPP composites. Maleic‐anhydride grafted polypropylene (MA‐ g ‐PP) was chosen as a compatibilizer and its content was optimized by determining the interfacial properties through fiber pullout test. Critical fiber length was calculated using interfacial shear strength. Fiber length distributions were analyzed using profile projector and image analyzer software system. Fiber aspect ratio of more than 100 was achieved after injection molding. The results of the tensile and flexural properties of injection molded long glass fiber reinforced polypropylene with a glass fiber volume fraction of 0.18 are presented. It was found that the differences in pellet sizes improve the mechanical properties by 3–8%. Efforts are made to theoretically predict the tensile strength and modulus using the Kelly‐Tyson and Halpin‐Tsai model, respectively. POLYM. COMPOS., 28:259–266, 2007. © 2007 Society of Plastic Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here