z-logo
Premium
Properties of a reactive‐graphitic‐carbon‐nanofibers‐reinforced epoxy
Author(s) -
Zhamu Aruna,
Hou Yaping,
Zhong WeiHong,
Stone James J.,
Li Jiang,
Lukehart Charles M.
Publication year - 2007
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20278
Subject(s) - epoxy , materials science , nanocomposite , composite material , flexural strength , curing (chemistry) , glass transition , flexural modulus , nanofiber , covalent bond , thermal expansion , carbon nanofiber , dynamic mechanical analysis , carbon nanotube , polymer , organic chemistry , chemistry
Our previous studies showed that herringbone graphitic GNFs surface‐derivatized with reactive linker molecules bearing pendant primary amino functional groups capable of binding covalently to epoxy resins. Of special importance, herringbone GNFs derivatized with 3,4′‐oxydianiline (GNF‐ODA) were found to react with neat butyl glycidyl ether to form mono‐, di‐, tri‐, and tetra‐glycidyl oligomers covalently coupled to the ODA pendant amino group. The resulting reactive GNF‐ODA (butyl glycidyl) n nanofibers, r‐GNF‐ODA, are especially well suited for reactive, covalent incorporation into epoxy resins during thermal curing. Based on these studies, nanocomposites reinforced by the r‐GNF‐ODA nanofibers at nanofiber loadings of 0.15–1.3 wt% were prepared. Flexural property of cured r‐GNF‐ODA/epoxy nanocomposites were measured through three‐point‐bending tests. Thermal properties, including glass transition temperature ( T g ) and coefficient of thermal expansion (CTE) for the nanocomposites, were investigated using thermal mechanical analysis. The nanocomposites containing 0.3 wt% of the nanofibers gives the highest mechanical properties. At this 0.3‐wt% fiber loading, the flexural strength, modulus and breaking strain of the particular nanocomposite are increased by about 26, 20, and 30%, respectively, compared to that of pure epoxy matrix. Moreover, the T g value is the highest for this nanocomposite, 14°C higher than that of pure epoxy. The almost constant change in CTEs before and after T g , and very close to the change of pure epoxy, is in agreement with our previous study results on a chemical bond existing between the r‐GNF‐ODA nanofibers and epoxy resin in the resulting nanocomposites. POLYM. COMPOS., 28:605–611, 2007. © 2007 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here