Premium
Processing‐interphase‐property relationship in fiber‐reinforced thermosetting‐matrix composites
Author(s) -
Yang F.,
Pitchumani R.
Publication year - 2005
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20089
Subject(s) - interphase , thermosetting polymer , materials science , composite material , composite number , fiber , modulus , glass fiber , biology , genetics
Fabrication of thermosetting‐matrix composites is based on a critical step of cure, which involves applying a predefined temperature cycle to a fiber‐resin mixture. Several temperature‐dependent mass transport processes occur in the vicinity of the reinforcement fiber, leading to the formation of an interphase region with different chemical and physical properties from the bulk resin. The cure cycles applied on the macroscopic boundaries of the composite govern the microscopic cure kinetics near the fiber surface, which in turn determines the interphase and composite properties. A predictive approach to directly linking the cure cycles and final composite properties is not presently available and is established for the first time in this paper. A multiscale thermochemical model is developed to predict the concentration profile evolution with time near fiber surfaces at various locations across the composite thickness. The concentration profiles at the gelation time are mapped to modulus profiles within the interphase region, and a finite element analysis is used to determine the overall composite modulus in terms of the constituent interphase, fiber, and matrix properties. Relevant numerical results are presented for the first time where the composite modulus is directly linked to the cure cycle and interphase formation parameters without assumed structures or properties of the interphase. The results provide useful information for selecting material components and cure cycles parameters to achieve desired interphase and composite properties. POLYM. COMPOS., 26:193–208, 2005. © 2005 Society of Plastics Engineers