Premium
Thermal conductivity, electrical resistivity, mechanical, and rheological properties of thermoplastic composites filled with boron nitride and carbon fiber
Author(s) -
Ng Hsiao Yen,
Lu Xuehong,
Lau Soo Khim
Publication year - 2005
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20076
Subject(s) - materials science , composite material , boron nitride , thermal conductivity , ultimate tensile strength , electrical resistivity and conductivity , extrusion , polybutylene terephthalate , polyester , electrical engineering , engineering
Hybrid composites consisting of boron nitride (BN) platelets and carbon fibers (CF) in a polybutylene terephthalate (PBT) matrix were melt‐compounded, and their thermal and electrical conductivity, tensile, and rheological properties were investigated. While it does not lead to an enhancement in thermal conductivity with respect to PBT/BN composites, the results indicate that a combination of BN and CF in PBT can significantly reduce electrical conductivity of the composites compared to that of PBT/CF composites. The relative low thermal conductivity of the hybrid composites is attributed to CF breakage that occurred during the extrusion and alignment of CF in melt flow direction, which is normal to the heat flow encountered during the thermal conductivity tests induced by injection molding. The hybrid composites were, however, found to have better tensile properties and processibility than PBT/BN composites at the same total filler content. POLYM. COMPOS., 26:66–73, 2005. © 2004 Society of Plastics Engineers