z-logo
Premium
Permeability model for a woven fabric
Author(s) -
Šimáček Pavel,
Advani Suresh G.
Publication year - 1996
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.10682
Subject(s) - transfer molding , materials science , composite material , permeability (electromagnetism) , mold , transverse plane , darcy's law , composite number , lubrication , porosity , mechanics , porous medium , structural engineering , engineering , membrane , biology , genetics , physics
The resin transfer molding (RTM) method is used to manufacture composite parts. The reinforcing fibers are placed in a mold cavity and the resin is injected to fill up the empty spaces. After the resin cures, the mold is opened and the part ejected. To predict necessary pressures and filling times and the proper locations for the inlet ports for resin injection and vents for air ejection it is necessary to model the resin infiltration process. A key to this modeling is permeability which characterizes the resistance of fibers to the flow of infiltrating resin. A simplified model for in‐plane permeability of fabric reinforcement (preform) is developed here. This model uses lubrication theory for modeling the flow through open pores and Darcy's law for the transverse flow through the reinforcement. Scaling analysis is provided to justify the simplification and to estimate the range of validity for resulting expressions. Extension of the model to cover multi‐layered preforms is derived. Boundary conditions and the data necessary to specify the problem geometry are discussed. A numerical experiment is conducted to estimate the influence of the transverse permeability of the preform on the solution. A calculation is provided for the permeability of a plain weave fabric.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here