Premium
Resin transfer molding of natural fiber reinforced polybenzoxazine composities
Author(s) -
Dansiri Nadsuda,
Yanumet Nantaya,
Ellis John W.,
Ishida Hatsuo
Publication year - 2002
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.10437
Subject(s) - materials science , composite material , flexural strength , kenaf , curing (chemistry) , flexural modulus , transfer molding , absorption of water , izod impact strength test , composite number , natural fiber , fiber , ultimate tensile strength , mold
Kenaf fiber is incorporated in a polybenzoxazine (PBZX) resin matrix to form a unidirectionally reinforced composite containing 20 wt% fiber by a resin transfer molding technique. Two types of benzoxazine monomer are synthesized and used as resin mixtures: Benzozazines based on bisphenol‐A/aniline (BA‐a) and phenol/aniline (Ph‐a). The effects of varying BA‐a:Ph‐a ratio in the resin mixture and curing conditions on mechanical properties of pure PBZX resin and kenaf/PBZX composites are studies. The Flexural strength of the pure PBZX resin increases with increasing ratio of BA‐a:Ph‐a, curing temperature and curing time, but the impact strength increases only slightly. PBZX resin has lower water absorption and higher flexural modulus, when compared with unsaturated polyester (UPE) resin. PBZX composites with 20 wt% fiber content have lower flexural and impact strengths, but higher moduli compared with UPE composites with the same fiber content.