Premium
Hot water resistance of glass‐fiber and glass‐bead reinforced thermoplastics
Author(s) -
Kawaguchi Takafumi,
Nishimura Hiroyuki,
Ito Kazunori,
Kuriyama Takashi,
Narisawa Ikuo
Publication year - 2003
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.10018
Subject(s) - materials science , composite material , ultimate tensile strength , glass fiber , scanning electron microscope , polyoxymethylene , immersion (mathematics) , fiber , izod impact strength test , polymer , mathematics , pure mathematics
The hot water resistance of three kinds of short glass fiber or glass bead‐reinforced plastics [polyphenyleneether (PPE), polyphenylenesulfide (PPS), and polyoxymethylene (POM)] was studied by hot water immersion testing, tensile testing and water‐hammer fatigue testing. It was found that the degradation of the strength was observed only for the reinforced plastics under hot water immersion and that the change of the tensile strength was most drastic in glass fiber‐reinforced PPS (GFPPS). Scanning electron microscope (SEM) observations of the tensile fracture surface revealed that the change in tensile strength was attributable to the deterioration of the interface between the glass fiber and the matrix resin. The results of acoustic emission analysis also supported the conclusion that the change in strength was due to the deterioration of the interface. Although the change in the tensile strength of glass fiber‐reinforced PPE (GFPPE) was small compared with that of GFPPS, debonding between the glass fiber and the matrix resin and surface cracks was observed on the surface of the GFPPE specimens.