Research Library

Premium Inhibition of MEK confers hypersensitivity to X‐radiation in the context of BRAF mutation in a model of childhood astrocytoma
Studebaker Adam,
Bondra Kathryn,
Seum Star,
Shen Changxian,
Phelps Doris A.,
Chronowski Christopher,
Leasure Justin,
Smith Paul D.,
Kurmasheva Raushan T.,
Mo Xiaokui,
Fouladi Maryam,
Houghton Peter J.
Publication year2015
Publication title
pediatric blood and cancer
Resource typeJournals
Purpose Curative therapy for childhood glioma presents challenges when complete resection is not possible. Patients with recurrent low‐grade tumors or anaplastic astrocytoma may receive radiation treatment; however, the long‐term sequellae from radiation treatment can be severe. As many childhood gliomas are associated with activation of BRAF, we have explored the combination of ionizing radiation with MEK inhibition in a model of BRAF‐mutant anaplastic astrocytoma. Experimental Design The regulation of TORC1 signaling by BRAF was examined in BT‐40 (BRAF mutant) and BT‐35 (BRAF wild type) xenografts, in a cell line derived from the BT‐40 xenograft and two adult BRAF mutant glioblastoma cell lines. The effect of MEK inhibition (selumetinib), XRT (total dose 10 Gy as 2 Gy daily fractions), or the combination of selumetinib and XRT was evaluated in subcutaneous BT‐40 xenografts. Results Inhibition of MEK signaling by selumetinib suppressed TORC1 signaling only in the context of the BRAF‐mutant both in vitro and in vivo . Inhibition of MEK signaling in BT‐40 cells or in xenografts lead to a complete suppression of FANCD2 and conferred hypersensitivity to XRT in BT‐40 xenografts without increasing local skin toxicity. Conclusions Selumetinib suppressed TORC1 signaling in the context of BRAF mutation. Selumetinib caused a rapid downregulation of FANCD2 and markedly potentiated the effect of XRT. These data suggest the possibility of potentiating the effect of XRT selectively in tumor cells by MEK inhibition in the context of mutant BRAF or maintaining tumor control at lower doses of XRT that would decrease long‐term sequelae. Pediatr Blood Cancer 2015;62:1768–1774. © 2015 Wiley Periodicals, Inc.
Subject(s)anaplastic astrocytoma , astrocytoma , biochemistry , biology , cancer research , context (archaeology) , glioma , mapk/erk pathway , medicine , mek inhibitor , paleontology , selumetinib , signal transduction
SCImago Journal Rank1.116

Seeing content that should not be on Zendy? Contact us.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here