z-logo
Premium
Recipient‐derived EDA fibronectin promotes cardiac allograft fibrosis
Author(s) -
Booth Adam J,
Wood Sherri C,
Cornett Ashley M,
Dreffs Alyssa A,
Lu Guanyi,
Muro Andrés F,
White Eric S,
Bishop D Keith
Publication year - 2012
Publication title -
the journal of pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.964
H-Index - 184
eISSN - 1096-9896
pISSN - 0022-3417
DOI - 10.1002/path.3010
Subject(s) - fibronectin , fibrosis , extracellular matrix , immunology , immune system , cardiac fibrosis , transplantation , biology , medicine , cancer research , pathology , microbiology and biotechnology
Advances in donor matching and immunosuppressive therapies have decreased the prevalence of acute rejection of cardiac grafts; however, chronic rejection remains a significant obstacle for long‐term allograft survival. While initiating elements of anti‐allograft immune responses have been identified, the linkage between these factors and the ultimate development of cardiac fibrosis is not well understood. Tissue fibrosis resembles an exaggerated wound healing response, in which extracellular matrix (ECM) molecules are central. One such ECM molecule is an alternatively spliced isoform of the ubiquitous glycoprotein fibronectin (FN), termed extra domain A‐containing cellular fibronectin (EDA cFN). EDA cFN is instrumental in fibrogenesis; thus, we hypothesized that it might also regulate fibrotic remodelling associated with chronic rejection. We compared the development of acute and chronic cardiac allograft rejection in EDA cFN‐deficient (EDA −/− ) and wild‐type (WT) mice. While EDA −/− mice developed acute cardiac rejection in a manner indistinguishable from WT controls, cardiac allografts in EDA −/− mice were protected from fibrosis associated with chronic rejection. Decreased fibrosis was not associated with differences in cardiomyocyte hypertrophy or intra‐graft expression of pro‐fibrotic mediators. Further, we examined expression of EDA cFN and total FN by whole splenocytes under conditions promoting various T‐helper lineages. Conditions supporting regulatory T‐cell (Treg) development were characterized by greatest production of total FN and EDA cFN, though EDA cFN to total FN ratios were highest in Th1 cultures. These findings indicate that recipient‐derived EDA cFN is dispensable for acute allograft rejection responses but that it promotes the development of fibrosis associated with chronic rejection. Further, conditions favouring the development of regulatory T cells, widely considered graft‐protective, may drive production of ECM molecules which enhance deleterious remodelling responses. Thus, EDA cFN may be a therapeutic target for ameliorating fibrosis associated with chronic cardiac allograft rejection. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here