Premium
Comprehensive genetic and functional characterization of IPH‐926: a novel CDH1 ‐null tumour cell line from human lobular breast cancer
Author(s) -
Christgen Matthias,
Bruchhardt Henriette,
Hadamitzky Catarina,
Rudolph Cornelia,
Steinemann Doris,
Gadzicki Dorothea,
Hasemeier Britta,
Römermann Daniel,
Focken Tim,
Krech Till,
Ballmaier Matthias,
Schlegelberger Brigitte,
Kreipe Hans,
Lehmann Ulrich
Publication year - 2009
Publication title -
the journal of pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.964
H-Index - 184
eISSN - 1096-9896
pISSN - 0022-3417
DOI - 10.1002/path.2495
Subject(s) - cdh1 , biology , frameshift mutation , cancer research , cancer , breast cancer , invasive lobular carcinoma , pathology , mutation , cadherin , cell , gene , genetics , medicine , invasive ductal carcinoma
Infiltrating lobular breast cancer (ILBC) is a clinically and biologically distinct tumour entity defined by a characteristic linear cord invasion pattern and inactivation of the CDH1 tumour suppressor gene encoding for E‐cadherin. ILBCs also lack β‐catenin expression and show aberrant cytoplasmic localization of the E‐cadherin binding protein p120‐catenin. The lack of a well‐characterized ILBC cell line has hampered the functional characterization of ILBC cells in vitro . We report the establishment of a permanent ILBC cell line, named IPH‐926, which was derived from a patient with metastatic ILBC. The DNA fingerprint of IPH‐926 verified genetic identity with the patient and had no match among the human cell line collections of several international biological resource banks. IPH‐926 expressed various epithelial cell markers but lacked expression of E‐cadherin due to a previously unreported, homozygous CDH1 241ins4 frameshift mutation. Detection of the same CDH1 241ins4 mutation in archival tumour tissue of the corresponding primary ILBC proved the clonal origin of IPH‐926 from this particular tumour. IPH‐926 also lacked β‐catenin expression and showed aberrant cytoplasmic localization of p120‐catenin. Array‐CGH analysis of IPH‐926 revealed a profile of genomic imbalances that included many distinct alterations previously observed in primary ILBCs. Spectral karyotyping of IPH‐926 showed a hyperdiploid chromosome complement and numerous clonal, structural aberrations. IPH‐926 cells were anti‐cancer drug‐resistant, clonogenic in soft agar, and tumourigenic in SCID mice. In xenograft tumours, IPH‐926 cells recapitulated the linear cord invasion pattern that defines ILBCs. In summary, IPH‐926 significantly extends the biological spectrum of the established breast cancer cell lines and will facilitate functional analyses of genuine human ILBC cells in vitro and in vivo. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.