Premium
Synthesis of novel silicone modified acrylic resins and their film properties
Author(s) -
Özgümüş S.,
İyim T. B.,
Acar I.,
Küçükoğlu E.
Publication year - 2007
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.857
Subject(s) - materials science , thermogravimetric analysis , differential scanning calorimetry , benzoyl peroxide , polymer chemistry , methacrylate , silicone , toluene , acrylic resin , solvent , fourier transform infrared spectroscopy , thermal stability , chemical engineering , polymer , copolymer , organic chemistry , composite material , polymerization , chemistry , coating , physics , engineering , thermodynamics
New silicone modified acrylic resins were synthesized and some of their film properties were investigated. At first, macromer (MC) was synthesized by the condensation reaction of the reactive polysiloxane intermediate (Z‐6018) and 2‐hydroxyethyl methacrylate (HEMA) in toluene as solvent at 110°C under nitrogen atmosphere. Then, MC was reacted with 2‐dimethylaminoethyl methacrylate (DMAEMA) at different mole ratios (1:1, 1:3, 1:5) by using benzoyl peroxide as initiator in toluene to obtain novel silicone acrylic resins. These resins were characterized by Fourier Transform Infrared Spectrometry (FT‐IR), and their thermal properties were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. The properties of the films prepared from these resins were determined. The results showed that these resins are thermally stable polymers and all films are flexible, semi‐gloss and have excellent drying, adhesion properties. Copyright © 2007 John Wiley & Sons, Ltd.