Premium
Surface modification of glass beads with poly(acrylic acid)
Author(s) -
Zengin H.,
Hu B.,
Siddiqui J. A.,
Ottenbrite R. M.
Publication year - 2006
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.721
Subject(s) - materials science , silanol , contact angle , thermogravimetric analysis , scanning electron microscope , acrylic acid , surface modification , polymer chemistry , sodium hydroxide , chemical engineering , polymer , porosity , hexane , composite material , copolymer , chromatography , organic chemistry , chemistry , catalysis , engineering
Non‐porous P 2 glass beads were etched with sodium hydroxide to increase the number of silanol groups that could be used to modify the surface. The etched glass beads were then functionalized with 3‐aminopropyltriethoxysilane (APS) and/or glycidoxypropyltrimethoxysilane (GPS). The surface of the glass beads were further modified with poly(acrylic acid) (PAA) by reacting the carboxyl groups on PAA with the amino groups of the pregrafted APS. The chemical modifications were characterized by FT‐IR spectroscopy, particle size analyzer and tensiometry for contact angle and porosity measurements. Five different molecular weight PAA polymers ranging from 2000 to 3,000,000 were grafted with less than expected increase of grafted PAA with molecular weight. The amount of APS and PAA on the surface was determined from thermogravimetric analysis and elemental analysis data. The surface properties of the surface modified glass beads were determined by measuring water and hexane penetration rate and contact angle. The surface morphology was examined by scanning electron microscopy. Copyright © 2006 John Wiley & Sons, Ltd.