Premium
Synthesis and characterization of folic acid‐modified carboxymethyl chitosan‐ursolic acid targeted nano‐drug carrier for the delivery of ursolic acid and 10‐hydroxycamptothecin
Author(s) -
Jing Fanchen,
Li Guiliang,
Wang Yingsa,
Zhu Shangbin,
Liu Rundong,
He Jing,
Lei Jiandu
Publication year - 2021
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.5090
Subject(s) - ursolic acid , chitosan , drug delivery , drug , drug carrier , in vivo , targeted drug delivery , materials science , amphiphile , chemistry , pharmacology , nanotechnology , biochemistry , polymer , organic chemistry , chromatography , medicine , copolymer , biology , microbiology and biotechnology
Carboxymethyl chitosan (CMCS), as a water‐soluble, biocompatible, and biodegradable polymer, is an excellent carrier for a sustained drug delivery system. In this study, a amphiphilic carboxymethyl chitosan‐ursolic acid nano‐drug carrier modified by folic acid (FPCU) were prepared, and then the nano‐drug carrier wrapped another anticancer drug 10‐hydroxycamptothecin were self‐assembled into nanoparticles (FPCU/HCPT NPs). The FPCU/HCPT NPs had a suitable size, high drug loading efficiency of ursolic acid (6.4%) and 10‐hydroxycamptothecin (14.1%). The drug release study in vitro indicated that the nanoparticles have obviously sustained effect and pH sensitive behaviors, the drug release amount was higher at pH 5.5 than at pH 7.4. in vitro and in vivo study showed that the nanoparticles displayed a high antitumor efficiency to tumor cells compared with free drug. The nano delivery system as a carrier for ursolic acid (UA) and 10‐hydroxycamptothecin (HCPT) has good application prospects in cancer treatment.