Premium
Low flammability and smoke epoxy resins with a novel DOPO ‐based imidazolone derivative
Author(s) -
Li Lei,
Li Shan,
Wang Hao,
Zhu Zongmin,
Yin Xianze,
Mao Jiawei
Publication year - 2021
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.5085
Subject(s) - materials science , fire retardant , epoxy , differential scanning calorimetry , char , flammability , thermal stability , thermogravimetry , cone calorimeter , fourier transform infrared spectroscopy , smoke , nuclear chemistry , thermosetting polymer , combustion , composite material , chemical engineering , organic chemistry , chemistry , physics , engineering , thermodynamics
In this work, a DOPO‐based imidazolone derivative named DHI was synthesized using DOPO, 5‐amino‐2‐benzimidazolinone and 4‐hydroxybenzaldehyde as raw materials. The chemical structure of DHI was characterized by 1 H‐NMR, 31 P‐NMR and Fourier transform infrared spectra (FTIR). Then, a series of different flame‐retardant epoxy resin (EP) thermosets were prepared by mixing flame retardant DHI. The thermal properties of the cured EPs was investigated by thermogravimetry analysis (TGA) and differential scanning calorimeter (DSC), and the results showed the thermal stability and glass transition temperature ( T g ) of the cured EP modified with DHI declined slightly compared with that of neat EP. The limited oxygen index (LOI) and UL94 test results exhibited DHI imparted good flame retardancy to EP. The EP‐4 (phosphorus content of 1.25%) possessed a LOI value of 36.5% and achieved a V‐0 rating. Furthermore, the peak of heat release rate (PHRR) and total heat release rate (THR) of EP‐4 decreased by 38.7% and 24.5%, respectively. Excitedly, the total smoke production (TSP) of EP‐4 sample declined by 62.5%, which meant DHI also made EP obtain excellent smoke suppression property. Moreover, the flame‐retardant mechanism was studied by scanning electron microscopy (SEM) and pyrolysis‐gas chromatography/mass spectrometry (Py‐GC/MS). It was reasonable inferred that DHI could not only promote EP to form dense char layer in condensed phase, but also restrain combustion in gaseous phase through catching the free radicals sourced from the degradation of EP.