Premium
Comparative studies of polymer‐dispersed liquid crystal films via a thiol‐ene click reaction
Author(s) -
Zhong Tingjun,
Mandle Richard J.,
Goodby John W.,
Zhang Lanying,
Zhang Cuihong
Publication year - 2019
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.4710
Subject(s) - materials science , monomer , contrast ratio , liquid crystal , polymerization , curing (chemistry) , polymer , ene reaction , uv curing , alkyl , chemical engineering , voltage , click chemistry , polymer chemistry , composite material , optoelectronics , organic chemistry , chemistry , physics , quantum mechanics , engineering
In this work, the thiol‐ene click reaction is employed to fabricate polymer‐dispersed liquid crystal (PDLC) films by photoinitiated polymerization. The PDLC films are prepared by systematic variation of key conditions: variety and content of ‐ene monomer, liquid crystal (LC) content, curing time, and curing light intensity. We find that both the morphologies and electro‐optic properties of these films are adjustable. When increasing the length of alkyl main chain of ‐ene monomers, the driving voltages reduce, but in turn, the contrast ratio decreases. Increasing ‐ene monomer content raises the driving voltages as well as the response time, and the increase of LC content lowers the driving voltages but has a negative effect on the contrast ratio. The changes to the curing conditions (both curing time and UV light intensity) can be used to modify the driving voltages, response time, and contrast ratios of PDLC films. These comparative studies will elucidate new insights in commercial applications of intelligent PDLC films.