z-logo
Premium
Porous, bicontinuous, and cationic polyelectrolyte obtained by high internal phase emulsion polymerization
Author(s) -
Walter Gerardo,
Toledo Leandro,
Urbano Bruno F.
Publication year - 2019
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.4708
Subject(s) - materials science , ethylene glycol dimethacrylate , polymerization , cationic polymerization , polymer chemistry , chemical engineering , swelling , emulsion polymerization , polymer , emulsion , polyelectrolyte , composite material , methacrylic acid , engineering
In this work, a cationic polyelectrolyte was synthesized through oil‐in‐water high internal phase emulsion polymerization. The porous polymer was obtained using the monomer (4‐vinyl benzyl)trimethylammonium chloride and cross‐linked with N,N ‐methylene‐ bis ‐acrylamide; additionally, ethylene glycol dimethacrylate (EGDMA) was used as the second cross‐linker, which was solubilized in the discontinuous phase leading to a bicontinuous‐like HIPE system because of the characteristics of this cross‐linker and the phase, where polymerized several effects on the polyHIPE were expected. In this way, the effect of the emulsifier and EGDMA content on the pore size, swelling, and rheological properties was assessed. It was observed that an increased concentration of the emulsifier in the polymerization decreased the pore size, narrowed its size distribution, and diminished the swelling capacity of the polymer. Additionally, the poly (HIPE) displayed a close‐cell structure explained by the locus of initiation starting from the droplets of the emulsion. After the addition of EGDMA, the polymer exhibited a major decrease in pore size and a significant decrease in swelling attributed to the polymerized skin layer on the droplet and hydrophobicity provided by the polyEGDMA, respectively. Rheological assays revealed an increase in the complex modulus and shear stress as the pore size decreased, but the addition of EGDMA did not produce an increase in the modulus, as expected. Finally, the sorption capabilities of the cationic porous polymers were evaluated through kinetic and isotherm sorption experiments using the anionic dye Acid Black 24.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here