z-logo
Premium
P (VDF‐ co ‐CTFE)‐ g ‐P2VP amphiphilic graft copolymers: Synthesis, structure, and permeation properties
Author(s) -
Park Byeong Ju,
Kim Na Un,
Ryu Du Yeol,
Kim Jong Hak
Publication year - 2019
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.4700
Subject(s) - copolymer , permeance , membrane , polymer chemistry , materials science , chlorotrifluoroethylene , atom transfer radical polymerization , chemical engineering , permeation , contact angle , amphiphile , pyridine , dimethylformamide , grafting , polymerization , polymer , tetrafluoroethylene , chemistry , organic chemistry , composite material , solvent , biochemistry , engineering
A series of amphiphilic graft copolymers of poly (vinylidene fluoride‐ co ‐chlorotrifluoroethylene)‐ g ‐poly(2‐vinyl pyridine), P (VDF‐ co ‐CTFE)‐ g ‐P2VP, with different degrees of P2VP grafting (from 26.3 to 45.6 wt%) was synthesized via one‐pot atom transfer radical polymerization (ATRP). The amphiphilic properties of P (VDF‐ co ‐CTFE)‐ g ‐P2VP graft copolymers allowed itself to self‐assemble into nanoscale structures. P (VDF‐ co ‐CTFE)‐ g ‐P2VP graft copolymers were introduced into neat P (VDF‐ co ‐CTFE) as additives to form blending membranes. When two different solvents, N‐methyl‐2‐pyrrolidone (NMP) and dimethylformamide (DMF), were used, specific organized crystalline structures were observed only in the NMP systems. P (VDF‐ co ‐CTFE)‐ g ‐P2VP played a pivotal role in controlling the morphology and pore structure of membranes. The water flux of the membranes increased from 57.2 to 310.1 L m −2 h −1 bar −1 with an increase in the PVDF‐ co ‐CTFE‐ g ‐P2VP loading (from 0 to 30 wt%) due to increased porosity and hydrophilicity. The flux recovery ratio (FRR) increased from 67.03% to 87.18%, and the irreversible fouling ( R ir ) decreased from 32.97% to 12.82%. Moreover, the pure gas permeance of the membranes with respect to N 2 was as high as 6.2 × 10 4 GPU (1 GPU = 10 –6 cm 3 [STP]/[s cm 2 cmHg]), indicating their possible use as a porous polymer support for gas separation applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom