Premium
Preparation of phosphorylated chitosan‐coated carbon microspheres as flame retardant and its application in unsaturated polyester resin
Author(s) -
Chen Zhongwei,
Yu Yuan,
Zhang Qingwu,
Chen Zhiquan,
Chen Tingting,
Jiang Juncheng
Publication year - 2019
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.4625
Subject(s) - cone calorimeter , materials science , limiting oxygen index , fire retardant , fourier transform infrared spectroscopy , thermogravimetric analysis , x ray photoelectron spectroscopy , scanning electron microscope , chitosan , nuclear chemistry , raman spectroscopy , pyrolysis , chemical engineering , composite material , char , chemistry , engineering , physics , optics
In this work, phosphorylated chitosan‐coated carbon microspheres (PCH@CMS) was successfully synthesized. Obtained PCH@CMS used as flame retardant was added into unsaturated polyester resin (UPR). Fourier infrared spectroscopy (FTIR) and X‐ray electron spectroscopy (XPS) results indicated that C═O, P─O, and P═O appeared on the surface of PCH@CMS. Compared with UPR, the residues of UPR/PCH@CMS‐10 at 800°C under nitrogen and air atmospheres increased by 9.0 and 3.9 wt%, respectively, and the peak heat release rate (pHRR) and the peak smoke release rate (pSPR) of UPR/PCH@CMS‐3 decreased by 18.9% and 23.5%, respectively. Limiting oxygen index (LOI), thermogravimetric analyzer (TG), and cone calorimeter test (CCT) results showed that the addition of PCH@CMS could enhance the flame retardancy and smoke suppression of the UPR composites. Moreover, the residues after CCT were characterized by scanning electron microscopy (SEM), XPS, and laser Raman spectroscopy (LRS). Based on the above results, the flame retardant mechanism of PCH@CMS was proposed. The carbon layer produced by the UPR/PCH@CMS composites was tortuous and could suppress the heat and pyrolysis product exchange with UPR matrix.