Premium
An overview on the recent developments in polyaniline‐based supercapacitors
Author(s) -
Banerjee Joyita,
Dutta Kingshuk,
Kader M. Abdul,
Nayak Sanjay K.
Publication year - 2019
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.4624
Subject(s) - supercapacitor , polyaniline , materials science , capacitance , conductive polymer , nanotechnology , dopant , electrochemistry , energy storage , composite material , polymer , electrode , doping , optoelectronics , chemistry , polymerization , power (physics) , physics , quantum mechanics
With the ever‐increasing depletion of nonrenewable fossil fuel reserve, greater attention has been directed towards renewable energy storage devices. One of the most important of such devices is the supercapacitor, which exhibits high specific capacitance. Polyaniline (PAni) is a versatile conducting polymer, which has demonstrated excellent electrochemical properties along with good stability and ease of synthesis. Therefore, PAni has been extensively used in the fabrication of supercapacitors. In the last few decades, researchers have studied the effect of morphology, developed during the synthesis of PAni, on its electrochemical properties. It is known that the electrical conductivity and the electrochemical properties of PAni get influenced by the level and type of dopant used, the method of synthesis adopted, and the surface area and porosity possessed. However, it has been realized that supercapacitors based on PAni suffer from short cycle life. This led to development of PAni composites with carbon‐based materials and transition metal oxides. In this review, focus has been laid on the achieved performance levels of the recently developed PAni‐based supercapacitors. In addition, an attempt has been made to study the fundamental aspects of the conductivity and the electrochemical properties of PAni and their effect on the supercapacitor performance. Moreover, several new interesting applications of PAni‐based supercapacitors have also been included in this review.