z-logo
Premium
ZnO nanoparticles as chain elasticity reducer and structural elasticity enhancer: Correlating the degradating role and localization of ZnO with the morphological and mechanical properties of PLA/PP/ZnO nanocomposite
Author(s) -
Keshavarzi Sahar,
Babaei Amir,
Goudarzi Alireza,
Shakeri Alireza
Publication year - 2019
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.4542
Subject(s) - materials science , nanocomposite , thermogravimetric analysis , rheology , nanoparticle , microstructure , elasticity (physics) , chemical engineering , composite material , nanotechnology , engineering
The main purpose of this study was to investigate the effect of zinc oxide (ZnO) nanoparticles on the morphological, mechanical, thermal, and rheological properties of PLA/PP blend. In this regard, nanocomposites containing 1, 3, and 5 wt% of ZnO nanoparticles were prepared by melt mixing. In addition, three different mixing procedures were adopted to study their effects on the microstructure of nanocomposites. The rheological behaviors demonstrated a higher elasticity and less compatibility for two phases in the case of nanocomposites containing nanoparticles in harmony with the morphological observations. Accordingly, it was correlated to the elasticity originating from the interphase, anticipated coalescence of dispersed particles as a result of degradation of PLA chains triggered by ZnO nanoparticles (ZnO‐NPs) and also agglomeration of ZnO‐NPs depending on the content of nanoparticles and chosen mixing procedure. It was also found that mixing method puts a remarkable influence on the microstructure and rheological behavior of nanocomposites. Results of mechanical characterizations and thermogravimetric analysis (TGA) also confirmed the degradation induced by ZnO nanoparticles.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here