Premium
Controlled release of antibiotics from poly‐ε‐caprolactone/polyethylene glycol wound dressing fabricated by direct‐writing melt electrospinning
Author(s) -
He FengLi,
Deng Xudong,
Zhou YaQing,
Zhang TuoDi,
Liu YaLi,
Ye YaJing,
Yin DaChuan
Publication year - 2019
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.4481
Subject(s) - electrospinning , materials science , polyethylene glycol , diffusion , caprolactone , fiber , peg ratio , composite number , composite material , drug delivery , controlled release , chemical engineering , polymer , nanotechnology , copolymer , physics , finance , economics , engineering , thermodynamics
Wound dressing, which can release anti‐infectives in a controlled way, is taking an important role in the treatment and recovery of the open wound. An adequate release of antibiotics can prevent infections from microorganisms effectively. Among the new candidates of fabricating base materials for wound dressing, electrospinning fiber mats are attracting numerous attentions for their excellent performance in controlled drug delivery. The drug release behavior of electrospinning fiber mats can be tuned by changing the chemical components and the geometric structures of the mats. In this study, fiber mats with different geometric structures, which composed of poly‐ε‐caprolactone (PCL), polyethylene glycol (PEG), and ciprofloxacin (Cip) with different blending ratios, were successfully fabricated by direct‐writing melt electrospinning, and the release behavior of Cip were subsequently investigated in vitro. The results showed that the addition of PEG improved the hydrophilicity of the mats, which in turn affected the manner of drug release. The presence of PEG changed the releasing mechanism from a non‐Fickian diffusion into Fickian diffusion, which indicated that the diffusion of Cip from the composite fiber mats became the main factor of drug release instead of polymer degradation. Besides, with the same composition but different geometric structures, the drug release behavior is of significant difference. Therefore, all the Cip‐loaded composite fiber mats showed antibacterial activities but with different efficiency. In summary, the release of the drug could be controlled by adding PEG and changing the geometric structures according to the different requirement of wound dressings.