Premium
Two‐way multi‐shape memory properties of peroxide crosslinked ethylene vinyl‐acetate copolymer (EVA)/polycaprolactone (PCL) blends
Author(s) -
Han JinLin,
Lai SunMou,
Chiu Yu Ting
Publication year - 2018
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.4309
Subject(s) - materials science , copolymer , polycaprolactone , ethylene vinyl acetate , composite material , crystallization , elongation , shape memory alloy , polymer , vinyl acetate , chemical engineering , ultimate tensile strength , engineering
Rare studies have investigated on the 2‐way shape memory crosslinked blends with multiple shape memory behavior up to date. To consider the merit of commercial cost‐competitive crystalline polymers, ethylene vinyl‐acetate copolymer (EVA) / polycaprolactone (PCL) blends (60/40 and 30/70) were peroxide‐cured to form the 2‐way multi‐shape memory crosslinked blends using a melt‐blending method. Both resins were selected to have a similar controlled crosslinking degree, which allowed us to distinctly evaluate their actuation contributions from the cooling‐induced elongation (crystallization) and from the entropy‐driven elongation during cooling process, respectively. In the 2‐way process for the 60/40 system, 2 respective peaks contributed from the cooling‐induced crystallization of EVA and PCL in the cooling curves based on the strain derivate rates at various temperatures were observed. After the cooling process under the loading stress of 150 kPa, the 2‐step heating‐induced contraction process with increasing temperature started at 54.1°C above the melting temperature of PCL at 52.3°C and EVA at 78.3°C, demonstrating 2‐way multi‐shape memory behavior. The multi‐step behavior was more prominent at higher PCL composition and higher load for the 30/70 system. It was found that the entropy‐driven contribution to the overall actuation magnitude increased with increasing nominal loads due to the increased orientation of molecular networks in the blends. The current approach offers numerous possibilities in preparing 2‐way multi‐shape memory crosslinked blends.