Premium
Optimization of UHMWPE/graphene nanocomposite preparation by single‐supported Ziegler‐Natta catalytic system via RSM
Author(s) -
Shafiee Mojtaba,
Akbari Ali
Publication year - 2018
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.4297
Subject(s) - materials science , nanocomposite , polymer , catalysis , natta , graphene , scanning electron microscope , monomer , dispersion (optics) , chemical engineering , nanoparticle , response surface methodology , polyethylene , composite material , nanotechnology , organic chemistry , polymerization , chromatography , chemistry , engineering , physics , optics
In this study, the preparation of ultra‐high molecular weight polyethylene/graphene nanocomposite was carried out using single‐supported Ziegler‐Natta catalyst, and the operational conditions were optimized via response surface methodology. For this purpose, the effect of 3 parameters, monomer pressure, temperature, and molar ratio of [Al] respect to [Ti] on the catalyst productivity and molecular weight of the synthesized nanocomposite polymer, was investigated using the Box‐Behnken experimental design at 3 levels. Monomer pressure, temperature, and molar ratio of [Al] respect to [Ti] were considered as independent variables and catalyst productivity and molecular weight as dependent variables. The highest catalyst productivity and molecular weight were equal to 923 (grPE/mmolTi.h) and 2.04 (million gr/mol), respectively, which were obtained under optimal reaction conditions: temperature of 60°C, pressure of 8 bar, and molar ratio of 185. Finally, in order to investigate the morphology and nanoparticle dispersion in polymer matrix, scanning electron microscope and X‐ray diffraction were used. The results indicate the homogenous dispersion of graphene nanoparticles in polymer matrix.