Premium
Quadruple‐shape‐memory effect of TPI/LDPE/HDPE composites
Author(s) -
Xian Jiayu,
Geng Jieting,
Wang Yan,
Xia Lin
Publication year - 2018
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.4209
Subject(s) - materials science , low density polyethylene , high density polyethylene , composite material , differential scanning calorimetry , polyethylene , crystallization , shape memory polymer , shape memory alloy , crystallization of polymers , polymer , chemical engineering , thermodynamics , physics , engineering
Shape‐memory polymers are important smart materials with potential applications in smart textiles, medical devices, and sensors. We prepared trans‐1,4‐polyisoprene, low‐density polyethylene (LDPE), and high‐density polyethylene (HDPE) shape‐memory composites using a simple mechanical blend method. The mechanical, thermal, and shape‐memory properties of the composites were studied. Our results showed that the shape‐memory composites could memorize 3 temporary shapes, as revealed by the presence of broad melting transition peaks in the differential scanning calorimetry curves. In the trans‐1,4‐polyisoprene/LDPE/HDPE composites, the cross‐linked network and the crystallization of the LDPE and HDPE portions can serve as fixed domains, and all crystallizations can act as reversible domains. We proposed a schematic diagram to explain the vital role of the cross‐linked network and the crystallization in the shape‐memory process.