Premium
Dynamics of entangled supramolecular polymer networks in presence of high‐order associations of strong hydrogen bonding groups
Author(s) -
Jangizehi Amir,
Ghaffarian Seyed Reza,
Ahmadi Mostafa
Publication year - 2018
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.4178
Subject(s) - supramolecular chemistry , supramolecular polymers , polymer , dissociation (chemistry) , chemical physics , materials science , stacking , relaxation (psychology) , hydrogen bond , crystallography , chemistry , molecule , composite material , organic chemistry , crystal structure , psychology , social psychology
Dynamics of entangled polymer chains in the melt state are deliberately excluded in most of the studies on supramolecular polymer networks by utilizing nonentangled precursor chains. Relaxation of the system mainly depends on the dissociation of the associative groups in latter case and nonentangled chains deliver nothing to resist afterward. Conversely, in an entangled system, relaxation of polymer chains and dissociation of associative groups can occurred parallel. Supramolecular networks based on an entangled precursor polymer with different levels of strong associating ureidopyrimidinone (UPy) groups are synthesized to screen the corresponding effects on the dynamics of the system. Binary‐associated UPy groups phase separate into collective assemblies by stacking and form high‐order, needle‐like domains at higher UPy contents. Relaxation of polymer chains is significantly hindered due to the trapping of polymer segments between UPy stacks. Above a certain threshold of UPy content (~4 mol%), the plateau level and final relaxation time of networks show a significant jump, which is attributed to the onset of high‐order association of UPy groups.