z-logo
Premium
Effects of thinner on RTV silicone rubber nanocomposites reinforced with GR and CNTs
Author(s) -
Kumar Vineet,
Lee DongJoo
Publication year - 2017
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.4071
Subject(s) - materials science , composite material , silicone rubber , vulcanization , natural rubber , elastomer , carbon nanotube , nanocomposite , polymer
The effects of thinner on rubber specimens with carbon nanotubes (CNTs) and graphitic nanofillers (GR) was studied for robotics applications. Rubber specimens were prepared by dispersing GR, CNTs and thinner in room temperature vulcanized (RTV) silicone rubber through solution mixing. Microscopic studies have confirmed occurrence of swelling in polymer chains due to migration of thinner. It results an increase in topological depth from 40 nm (no thinner) to 120 nm (40 phr of thinner). An elastic modulus of ~4.4 MPa (without thinner) was higher than 2.8 MPa (10 phr of thinner). At 100% strain, the lower dissipation losses of 110% (without thinner) and 70% (40 phr of thinner) were obtained. The resistance increases from 4.6 kΩ (without thinner) to 5.7 kΩ (10 phr of thinner). At 0.4‐mm‐thick elastomer slab, an actuation displacement of 0.81 mm (without thinner) was obtained which increased to 1.1 mm (60 phr of thinner). Thus, the thinner can be useful for easier processing, controlled stiffness, minimizing dissipation losses, increasing the actuation displacement and decreasing the cost of the device. Copyright © 2017 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here