Premium
Analysis and evaluation of biobased polyester of PTT/PBAT blend: thermal, dynamic mechanical, interfacial bonding, and morphological properties
Author(s) -
Dhandapani Suresh,
Nayak Sanjay K.,
Mohanty Smita
Publication year - 2016
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.3752
Subject(s) - materials science , dynamic mechanical analysis , thermogravimetric analysis , composite material , thermal stability , toughness , polyester , izod impact strength test , extrusion , adipate , polymer , chemical engineering , ultimate tensile strength , engineering
Novel blends were prepared from biobased poly(trimethylene terephthalate) (PTT) and poly(butylene adipate‐co‐terephthalate) (PBAT) using a twin screw extrusion process as a function of different weight ratios. Thermal stability, mechanical, and interfacial properties of PTT/PBAT blends were investigated using a thermogravimetric analyzer and mechanical analyzer. Phase behavior and surface morphology of the blends were characterized using scanning electron microscopy. Interfacial bonding value of the PTT/PBAT blend was evaluated from the Pukanszky empirical relationship. Viscoelastic properties of PTT/PBAT blends were investigated using the dynamic mechanical analyzer. PTT/PBAT blend exhibited higher thermal stability than the neat PTT matrix. The entire blend showed better interfacial adhesion between the matrixes. Storage and loss modulus of the PTT/PBAT blend reduces with increasing PBAT content. PTT/PBAT blend exhibited higher impact energy than the neat PTT matrix, because of its flexible and amorphous nature of PBAT polymer and increasing toughness. Copyright © 2016 John Wiley & Sons, Ltd.