Premium
Synthesis of reusable macroporous St/BMA copolymer resin and its absorbency to organic solvent and oil
Author(s) -
Du Yang,
Fang Pei,
Chen Jie,
Hou Xin
Publication year - 2016
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.3679
Subject(s) - materials science , copolymer , chemical engineering , fourier transform infrared spectroscopy , methacrylate , styrene , solvent , monomer , absorption (acoustics) , organic chemistry , polymer , composite material , chemistry , engineering
In this paper, a reusable macroporous high oil absorption resin for oil spills was synthesized successfully by suspension copolymerization with styrene and butyl methacrylate as monomers. In the process of suspension copolymerization, a porogenic agent was introduced into the reaction system. Structure and surface morphology of the macroporous resin were characterized by Fourier transform infrared spectrometry, X‐ray photoelectron spectroscopy, and scanning electron microscopy. In addition, effects of different reaction factors on density and particle size of macroporous resins and effects of various factors on the oil absorbency of macroporous resins were discussed. Furthermore, oil absorption kinetics and repeatability of resin and the absorbency of the macroporous resin in various oils were also studied. Compared with the resin without macroporous structure, the maximum oil absorbency of the macroporous resin to the carbon tetrachloride (CCl 4 ) was 28.28 g/g, which increased by 61.42%. Meanwhile, the saturated oil absorption time of resin also decreased significantly from 7.5 to 2 hr. The macroporous high oil absorption resin presents predominant performance of reuse and regeneration. Moreover, the macroporous resin had certain absorbency (8.7 g/g) to crude oil, which makes it useful for marine oil spill. Copyright © 2015 John Wiley & Sons, Ltd.