Premium
Facile fabrication of porous oil‐absorbent microspheres with high oil absorbency and fast oil absorption speed
Author(s) -
Duan Yajing,
Bian Fengling,
Huang Hongjun
Publication year - 2016
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.3625
Subject(s) - materials science , acrylate , methacrylate , chemical engineering , toluene , absorption (acoustics) , diesel fuel , monomer , suspension polymerization , fabrication , porosity , motor oil , polymer , composite material , organic chemistry , chemistry , medicine , alternative medicine , pathology , engineering , physics , thermodynamics
A novel type of porous oil‐absorbent microspheres based on poly(stearyl methacrylate‐co‐butyl acrylate) was prepared via suspension polymerization. By investigating the effects of the cross‐linking agent, monomer ratio, initiator, stabilizer, water/oil ratio, and porogen agent on the oil absorbency of the prepared oil‐absorbents, an optimized oil‐absorbent microsphere OAM‐T was obtained, and characterized by FT‐IR and SEM. The oil absorbencies of OAM‐T toward chloroform, toluene, gasoline, and diesel were measured to be 61.9, 32.6, 28.8, and 28.2 g/g respectively, with oil absorption saturation time being 1.0, 1.5, 2.0, and 3.0 hr. The oil retention of OAM‐T toward the four oils is all above 95%. Besides in pure oils, OAM‐T also has high oil absorbencies in oil–water mixture. It can be reused at least 12 times with little change in oil absorbency. Owing to its excellent oil absorption performance, OAM‐T might find applications for removing oil spills and organic pollutants from water. Copyright © 2015 John Wiley & Sons, Ltd.