Premium
Synthesis and morphology of rigid polyurethane foams with POSS as pendant groups or chemical crosslinks
Author(s) -
Hebda Edyta,
Ozimek Jan,
Raftopoulos Konstantinos N.,
Michałowski Sławomir,
Pielichowski Jan,
Jancia Małgorzata,
Pielichowski Krzysztof
Publication year - 2015
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.3504
Subject(s) - materials science , polyurethane , compressive strength , scanning electron microscope , fourier transform infrared spectroscopy , composite material , composite number , morphology (biology) , absorption of water , chemical engineering , biology , engineering , genetics
This work reports on the preparation of polyurethane foams (PUFs) chemically modified by functionalized 1,2‐propanediolisobutyl polyhedral oligosilsesquioxane (PHI‐POSS) as pendant groups and octa(3‐hydroxy‐3‐methylbutyldimethylsiloxy) POSS (OCTA‐POSS) as chemical crosslinks. The resulting foams, which contain 0 to 15 wt% POSS (versus polyol), were characterized in terms of their structure, morphology, density, thermal conductivity, compressive strength, and water absorption. Fourier transform infrared‐attenuated total reflectance revealed good reaction rate between POSS and PUF. PHI‐POSS suppresses the formation of the hydrogen bonds in the soft phase. The composite foams with OCTA‐POSS showed a reduced number of cells and increased average area of foam cells in comparison with the PUF, while the addition of PHI‐POSS causes an increase in the number of cells of the foam as compared with the reference, and thus a reduction in the average area of cells. Scanning electron microscopy–energy‐dispersive X‐ray spectroscopy analysis revealed that POSS moieties form lamellae‐shaped crystals of different sizes, distributed homogeneously in the bulk (PHI‐POSS) or close to the self surfaces (OCTA‐POSS). The compressive strength of PUF/POSS hybrids in the direction parallel and perpendicular to the direction of foam rise is greater than the strength of the reference foam. PHI‐POSS improves monotonically the compressive strength in the studied loading range. About 5 wt% OCTA‐POSS also provides reinforcement, but further loading reverses the phenomenon. PUF/POSS hybrids absorb less water than the pristine foam because of an increase of foam density. Copyright © 2015 John Wiley & Sons, Ltd.