z-logo
Premium
Fabrication of porous collagen/chitosan scaffolds with controlling microstructure for dermal equivalent
Author(s) -
Gao Changyou,
Wang Dengyong,
Shen Jiacong
Publication year - 2003
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.342
Subject(s) - materials science , chitosan , membrane , microstructure , porosity , chemical engineering , morphology (biology) , fabrication , solvent , quenching (fluorescence) , composite material , polymer chemistry , chemistry , organic chemistry , medicine , biochemistry , alternative medicine , pathology , biology , engineering , genetics , physics , quantum mechanics , fluorescence
Two sets of homemade apparatus have been utilized to fabricate collagen/chitosan porous membranes by quenching its acetic solution and subsequently extracting the solvent with ethanol. The influence of chitosan concentration on the surface morphology of the collagen/chitosan membranes was studied using a quenching cold plate (apparatus 1). The pore size was enlarged along with an increase in the chitosan content, accompanied with the emergence of a sheet‐like microstructure. Due to the large thermal conductivity of the membrane‐forming platform (stainless steel), collagen/chitosan membranes prepared using apparatus 1 at freezing temperature between −60 to −20 °C present similar pore size (2–4 nm) and surface morphology. However, a large difference in pore size is generated using apparatus 2 (membrane preparation in a cold ethanol bath) and using a membrane‐forming platform of poor thermal conductivity (polymethylmethacrylate), e.g. ∼10 to 20 μm at freezing temperature of −60 to −40 °C, and 265 μm at −20 °C accompanied with the transformation from fiber‐ to sheet‐dominated morphology. The spongy collagen/chitosan membranes with pore sizes ranging from tens to hundreds of micrometers and porosity higher than 95%, which could be used as dermal regeneration template, have thus been fabricated. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom