Premium
Novel species of soluble thermally stable poly(keto ether ether amide)s: preparation, characterization, and properties
Author(s) -
Sabbaghian Elahe,
MehdipourAtaei Shahram,
Jalilian Seyedmehrdad,
Esfahanizadeh Mahshid,
Salehi Ali Mohammad,
Khodabakhshi Fardin,
Jalalian Elham
Publication year - 2015
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.3401
Subject(s) - terephthaloyl chloride , diamine , ether , polymer chemistry , inherent viscosity , thermal stability , crystallinity , materials science , amide , solubility , benzophenone , polymer , condensation polymer , organic chemistry , chemistry , intrinsic viscosity , composite material
A new diamine containing one keto and four ether groups was prepared through a three‐step reaction: first, hydroquinone was reacted with 1‐fluoro‐4‐nitrobenzene and 4‐(4‐nitrophenoxy) phenol was obtained. The next step was reduction of nitro group to amino group in which 4‐(4‐aminophenoxy) phenol was prepared. In the final step, the new diamine named as bis(4‐(4‐(4‐aminophenoxy)phenoxy)phenyl) methanone was synthesized through reaction of the later compound with 4,4′‐difluoro benzophenone. All prepared materials were fully characterized by spectroscopic methods and elemental analysis. Novel species of poly(keto ether ether amide)s were synthesized via polymerization reaction of the diamine with different diacid chlorides including terephthaloyl chloride, isophthaloyl chloride, and adipoyl chloride. All polyamides were characterized, and their properties such as thermal behavior, thermal stability, solubility, viscosity, water uptake, and crystallinity were investigated and compared together. The glass transition temperatures of the polymers were about 204–232°C, and their 10% weight losses were in the range of 396–448°C. Polymers showed high thermal stability and enhanced solubility that mainly resulted from incorporation of the diamine structure containing keto, ether, and aromatic units into polyamide backbones. Copyright © 2014 John Wiley & Sons, Ltd.