z-logo
Premium
Insights into the surface property and blood compatibility of polyethersulfone/polyvinylpyrrolidone composite membranes: toward high‐performance hemodialyzer
Author(s) -
Qin Hui,
Nie Shengqiang,
Cheng Chong,
Ran Fen,
He Chao,
Ma Lang,
Yin Zehua,
Zhao Changsheng
Publication year - 2014
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.3316
Subject(s) - membrane , polyvinylpyrrolidone , materials science , chemical engineering , composite number , polymer chemistry , polymer , composite material , chemistry , biochemistry , engineering
Applications of blood purification membranes are fuelled by diverse clinical needs, such as hemodialysis, hemodiafiltration, hemofiltration, plasmapheresis, and plasma collection. For clinical usage, the adding of polyvinylpyrrolidone (PVP) is the general protocol for the design of antifouling and antithrombotic properties integrated artificial membranes. In the present work, to insight into the detailed surface properties and blood compatibilities of the PVP blended composite membranes, we synthesized a series of PVP polymers with different molecular weights using reversible addition fragmentation chain transfer polymerization and designed a series of polyethersulfone (PES)/PVP composite membranes by a physically blending method. The effects of PVP molecular weights and blending ratios on the surface properties and the blood compatibilities of the composite membranes were investigated in detail. The surface attenuated total reflection Fourier transform infrared spectra and scanning electron microscopy pictures indicated that the PVP was successfully immobilized into the membranes, and the composite membranes exhibited morphology transformation from finger‐like structure to sponge‐like structure, which indicated that the composite membrane had tunable porosity and permeability by adding PVP. The blood compatible tests revealed that the composite membranes showed increased hydrophilicity, decreased plasma protein adsorption, suppressed platelet adhesion, and prolonged blood clotting time compared with pristine PES membrane. These results indicated that the PES/PVP composite membranes exhibited enhanced antifouling and antithrombotic properties than the pristine PES membrane. Meanwhile, the results also suggested that the composite membranes with larger molecular weight PVP and higher blending ratios might show better blood compatibility. Copyright © 2014 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here