z-logo
Premium
Molecular dynamics in ion‐irradiated poly(ether ether ketone) investigated by two‐dimensional correlation dielectric relaxation spectroscopy
Author(s) -
Al Lafi Abdul G.
Publication year - 2014
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.3197
Subject(s) - materials science , relaxation (psychology) , peek , irradiation , ether , ion , glass transition , dielectric , analytical chemistry (journal) , proton , polymer , nuclear magnetic resonance , chemistry , organic chemistry , optoelectronics , physics , composite material , psychology , social psychology , quantum mechanics , nuclear physics
This paper reports the first use of temperature–temperature 2D correlation dielectric relaxation spectroscopy (2D COS‐DRS) to study the molecular relaxation dynamics in ion‐irradiated poly(ether ether ketone) (PEEK). With the help of the high resolution and high sensitivity of 2D COS‐DRS, it was possible to locate the position of the motion of water molecules in the dielectric spectrum of PEEK. This occurred at −20°C and increased in intensity on increasing water contents. On irradiation, a new relaxation was observed at −75°C and −85°C for proton and helium ion‐irradiated samples, respectively. This increased in intensity on increasing radiation dose and was assigned to main‐chain phenyl motions of the cross‐linked units of the polymer. 2D COS‐DRS was also successfully applied to resolve the overlap in molecular events in the region of glass transition. Three processes that change in different directions with respect to ion irradiation dose were identified. These were at 160°C, 175°C, and 240°C and were assigned to the α relaxation, second α relaxation, and the onset of conductivity, respectively. In addition, hybrid 2D COS‐DRS was used to investigate the effect of the so‐called linear energy transfer effect, and the results showed that helium ions were more effective in cross‐linking PEEK. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here