z-logo
Premium
The relationship between the compatibility and thermodegradation stability of modified polyetherimide/bismaleimide resins by hyperbranched polysiloxane with high degree of branching
Author(s) -
Sun Bin,
Qin Dake,
Liang Guozheng,
Gu Aijuan,
Yuan Li
Publication year - 2013
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.3180
Subject(s) - polyetherimide , materials science , branching (polymer chemistry) , compatibility (geochemistry) , composite material , polymer
Amino‐terminated hyperbranched polysiloxane (AHBSi) with high degree of branching (0.8) is used to improve the compatibilization of polyetherimide (PEI)/allyl bisphenol A modified bismaleimide (BD) blend. The relationship between the compatibility and thermal/thermal‐oxidative stability of the AHBSi/PEI/BD system is intensively investigated. Although PEI has high thermal stability, the PEI/BD blend has poorer thermal stability than BD resin due to the incompatibility. With the addition of AHBSi into the PEI/BD blend, AHBSi chemically connects PEI and BD, leading to the increased compatibility; moreover, interestingly, both thermal and thermo‐oxidative stabilities are significantly improved. Under a N 2 atmosphere, the addition of 0.5 wt% of AHBSi increases the initial degradation temperature of the PEI/BD blend from 395°C to 412°C. The thermodegradation kinetics were studied, and results show that the AHBSi/PEI/BD system has much higher activation energy of degradation in both N 2 and air atmospheres. The origin behind these interesting results is intensively investigated. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom