z-logo
Premium
Influence of binary interactions on phase behavior of water/ dimethylsulfoxide/ polyethersulfone casting solution: Thermodynamic modeling
Author(s) -
Madaeni S. S.,
Bakhtiari L.,
Salehi E.
Publication year - 2013
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.3178
Subject(s) - binodal , ternary operation , thermodynamics , materials science , phase inversion , phase (matter) , binary number , ternary numeral system , membrane , phase diagram , chemistry , organic chemistry , computer science , mathematics , physics , biochemistry , arithmetic , programming language
Prediction and control of membrane morphology using multi‐phase thermodynamic knowledge are of growing interest. The water/dimethylsulfoxide/polyethersulfone ternary system is a widely used casting dope for the preparation of MF, UF, and NF membranes. In the current study, Flory–Huggins (F–H) model was applied to predict the behavior of this ternary system during phase inversion. Titration method was applied to generate cloud point data. The prediction accuracy of the F–H model was directly dependent on the binary interactions of the system components. The compressible regular solution (CRS) model predicts the binodal location using only the pure component properties as the input parameters. Accordingly, the influence of binary parameters on the location of the binodal curves was investigated. The predicted binodal points showed superior accordance with the experimental data, where the binary interaction between nonsolvent (water) and solvent (DMSO) was overlooked. In addition, the modelling results emphasized on the pivotal importance of the interactions between polymer (PES) and nonsolvent (water) on the phase inversion and thus, on the control of the membrane morphology. The CRS model offered a greater conformity with the experimental results in comparison with the F–H theory. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here