Premium
Insight into industrial PLA aging process by complementary use of rheology, HPLC, and MALDI
Author(s) -
DopicoGarcía Sonia,
AresPernas Ana,
OteroCanabal Jorge,
CastroLópez Mar,
LópezVilariño José M.,
GonzálezRodríguez Victoria,
AbadLópez María J.
Publication year - 2013
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.3136
Subject(s) - polylactic acid , rheology , high performance liquid chromatography , degradation (telecommunications) , hydrolysis , materials science , molar mass distribution , mass spectrometry , desorption , chromatography , chemical engineering , gel permeation chromatography , polymer , chemistry , organic chemistry , composite material , computer science , adsorption , telecommunications , engineering
Nowadays, there is a growing availability of biodegradable industrial materials intended to food contact applications whose service life behavior needs to be further investigated. This article is focused on the degradation of two materials based on polylactic acid. The correlation between the rate of degradation and the amount of trapped degradation products was investigated applying three characterization techniques in parallel, namely rheology, high‐performance liquid chromatography (HPLC), and matrix‐assisted laser desorption/ionization (MALDI). The rate of degradation was studied through the evaluation of their rheological properties and calculation of the number of average molecular weights, and weight‐average molecular weights. Water‐soluble oligomers and lactic acid were quantified by HPLC‐ultraviolet. Changes in cyclic and linear oligomers were monitored by MALDI‐time‐of‐flight mass spectrometry. Specimens of 4‐mm thickness of each biopolymer were subjected to hydrolysis in deionized water up to 6 months at two temperatures, simulating service conditions of food packaging. The diminution in viscosity and consequently in molecular weight distribution (20–60%) showed the degradation of the molecular structure of both polylactic acids. The chain scission was followed through the increasing values of lactic acid and hydrolyzed oligomers (twofold to eightfold), and the predominant signal of the linear oligomers over the cyclic ones with aging. Rheology, HPLC, and MALDI showed to be complementary tools to better understand the changes in the molecular structure. The obtained results showed the necessity of adding suitable stabilizers for each particular food packaging application. Copyright © 2013 John Wiley & Sons, Ltd.