z-logo
Premium
Poly(vinyl alcohol)/melamine phosphate composites prepared through thermal processing: thermal stability and flame retardancy
Author(s) -
Guo Dan,
Wang Qi,
Bai Shibing
Publication year - 2013
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.3089
Subject(s) - materials science , limiting oxygen index , cone calorimeter , thermal stability , composite material , vinyl alcohol , fire retardant , thermogravimetric analysis , melamine , fourier transform infrared spectroscopy , combustion , chemical engineering , char , organic chemistry , polymer , chemistry , engineering
Poly(vinyl alcohol)/melamine phosphate composites (PVA/MP) as a novel halogen‐free, flame‐retardant foam matrix were prepared through thermal processing, and then their thermal stability and flame retardancy were investigated by thermo‐gravimetric analysis, micro‐scale combustion calorimeter, cone calorimeter, vertical burning test, and limiting oxygen index (LOI) test. It was found that the thermal stability and combustion properties of the PVA/MP composites could be influenced by the addition of MP. Compared with the control PVA sample (B‐PVA), in the PVA/MP (75/25) composites, the temperature at 5% mass loss ( T 5% ) decreased about 10°C, the residual chars at 600°C increased by nearly 27%, the temperature at the maximum peak heat release rate ( T P ) shifted from 292°C to 452°C, and the total heat released and the heat release capacity (HRC) decreased by 28% and 14%, respectively. Moreover, the PVA/MP composites could reach LOI value up to 35% and UL94 classification V‐0, showing good flame retardancy. At the same time, both Fourier transform infrared and X‐ray photoelectron spectroscopy spectra of the residual chars from the PVA/MP composites demonstrated that the catalytic effect of MP on the dehydration and decarboxylation reactions of PVA, and the chemical reactivity of MP during the chars‐forming reactions could be used to account for the changed thermal stability and flame retardancy of the PVA/MP composites. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here