Premium
Synthesis and characterization of novel fluorinated polyurethane elastomers based on 2,2‐bis[4‐(4‐amino‐2‐trifluoromehyloxyphenyl) phenyl]propane
Author(s) -
Xu Wenzong,
Lu Bo,
Hu Yuan,
Song Lei,
Nie Shibin
Publication year - 2012
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.1983
Subject(s) - materials science , propane , elastomer , polyurethane , thermal stability , thermogravimetric analysis , contact angle , polymer chemistry , fourier transform infrared spectroscopy , absorption of water , composite material , chemical engineering , organic chemistry , chemistry , engineering
2,2‐Bis[4‐(4‐amino‐2‐trifluoromehyloxyphenyl) phenyl]propane (BAFPP) was synthesized based on 2‐chlorobenzotrifluoride and bisphenol A and characterized by Fourier transform infrared spectroscopy and nuclear magnetic resonance. BAFPP was used as a chain extender to prepare a series of fluorine‐containing polyurethane elastomers (FPUEs) with different fluorine contents by changing the soft segments and isocyanate index ( R ). The FPUEs were investigated by water absorption, contact angle, X‐ray photoelectron spectroscopy, thermogravimetric analysis, and microscale combustion calorimetry. The results show that the FPUEs prepared from BAFPP were elastomers that have low surface tension, low water absorption, and good thermal stability. Furthermore, FPUEs also exhibit good flame resistance, and the peak heat release rate of FPUE based on BAFPP (282.9 W/g) is much lower than that of polyurethane elastomer without the F element (537.2 W/g). Copyright © 2011 John Wiley & Sons, Ltd.