Premium
Porous poly(vinylidene fluoride) membrane modified with hyperbranched poly(amine‐ester)
Author(s) -
Wei XiuZhen,
Yang Jia,
Zhu BaoKu,
Xu YouYi,
Zhang GuoLiang
Publication year - 2012
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.1979
Subject(s) - membrane , materials science , contact angle , fourier transform infrared spectroscopy , fluoride , chemical engineering , polymer chemistry , biocompatibility , adsorption , x ray photoelectron spectroscopy , scanning electron microscope , organic chemistry , chemistry , inorganic chemistry , composite material , biochemistry , engineering , metallurgy
Poly(vinylidene fluoride) (PVDF) membranes were hydrophilic modified with hydroxyl group terminated hyperbranched poly(amine‐ester) (HPAE). Fourier transform infrared spectroscopy (FT‐IR) was used to study the chemical change of PVDF membranes. X‐ray photoelectron spectroscopy (XPS) indicated that some HPAE molecules were retained in PVDF membrane through polymer chain coiling. The presence of HPAE would improve the hydrophilicity of PVDF membrane. Scanning electron microscopy (SEM) was employed to characterize the morphology of different membranes. The thermodynamic stability for PVDF/DMAc/HPAE/Water system was characterized by the determination of the gelation values. Precipitation kinetics for PVDF/DMAc/HPAE/Water system was studied by precipitation time measurement. The water contact angle indicated that the hydrophilicity and the biocompatibility corresponding to protein adsorption of PVDF membrane were improved significantly after blending with hydrophilic HPAE molecules. Copyright © 2011 John Wiley & Sons, Ltd.