z-logo
Premium
Studies on preparation of HDPE/CB composites including a novel oriented structure by the microwave heating and their characterization
Author(s) -
Zhang Jie,
Liu Fanghui,
Qian Xinyuan,
Lei Yanwei
Publication year - 2011
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.1582
Subject(s) - materials science , high density polyethylene , composite material , microwave , scanning electron microscope , layer (electronics) , polyethylene , core (optical fiber) , surface layer , penetration (warfare) , physics , quantum mechanics , engineering , operations research
Abstract Microwave heating has several advantages over traditional methods of heating, including rapid and uniform heating, greater penetration depth of heat into material, lower power costs and selective heating within the material and so on. In this paper, effects of microwave heating on the properties of high‐density polyethylene/carbon black (HDPE/CB) composites were studied. The results show that the HDPE/CB composites can be heated via microwave irradiation, and composites with different CB concentration exhibit different microwave heatability. The 20 wt% CB composites have the most rapid heating rate, and its temperature reaches 78°C after 10 sec, and 159°C after 150 sec, respectively. Meanwhile, microwave heating improves the mechanical properties of HDPE/CB composites. Scanning Electron Microscopy (SEM) analysis shows a better combination between CB particles and HDPE after microwave irradiation. Furthermore, selective heating of microwave was used to prepare a novel oriented structure, which the core layer has preferential orientation and the surface layer has little orientation. Characterization of the novel oriented structure was also studied. Wide angle X‐ray diffraction (WAXD) analysis of 25 wt% CB composites with the novel oriented structure shows that the diffraction peaks of the surface layer are obviously weaker than those of the core layer, which indicates that orientation in the core layer is more intensive than that in the surface layer. The novel oriented structure is different to the traditional skin‐core structure, in which the surface layer has preferential orientation and the core layer has little orientation. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here