Premium
Removal of Pb 2+ and Cd 2+ ions from aqueous solutions using guanidine modified hydrogels
Author(s) -
Yetimoğlu Ece Kök,
Fırlak Melike,
Kahraman Memet Vezir,
Deniz Sabahattin
Publication year - 2011
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.1554
Subject(s) - self healing hydrogels , adsorption , aqueous solution , langmuir adsorption model , metal ions in aqueous solution , acrylic acid , nuclear chemistry , cadmium , methacrylate , monomer , guanidine , materials science , metal , polymer chemistry , sulfonic acid , langmuir , chemistry , inorganic chemistry , polymer , organic chemistry
In this study, experimental measurements have been made on the batch adsorption of cadmium and lead ions from aqueous solutions using poly(guanidine modified 2‐acrylamido‐2‐methylpropan sulfonic acid/acrylic acid/ N ‐vinylpyrrolidone/2‐Hydroxyethyl methacrylate), P(AMPSG/AAc/NVP/HEMA) hydrogels. The guanidyl end group bearing AMPSG monomer was synthesized from the reaction of AMPS and guanidine. The hydrogels were prepared by UV‐curing technique. The morphology of the dry H10‐hydrogel sample was examined by SEM. The influence of the uptake conditions, such as pH, functional monomer per cent, contact time, initial feed concentration, and foreign metal ions on the metal ion binding capacity of hydrogel, was also tested. The selectivity of the hydrogel toward the different metal ions tested was Hg(II) > Pb(II) > Au(III) > Cd(II). The adsorption isotherm models were applied to the experimental data, and it was seen that the Langmuir isotherm model was the best fit for the adsorption of Cd(II) and Pb(II) ions on P(AMPSG/AAc/NVP/HEMA) hydrogel. It was found that adsorbed lead and cadmium ions on P(AMPSG/AAc/NVP/HEMA) hydrogel can be effectively desorbed by acid leaching and the regenerated P(AMPSG/AAc/NVP/HEMA) hydrogel can be reused almost five times less without any loss of adsorption capacity. Copyright © 2009 John Wiley & Sons, Ltd.