Premium
Phosphorus containing hydrogels
Author(s) -
Ilia Gheorghe
Publication year - 2009
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.1483
Subject(s) - self healing hydrogels , phosphazene , polymer , materials science , polyphosphazene , swelling , methacrylate , drug delivery , polymer science , polymer chemistry , chemical engineering , nanotechnology , organic chemistry , chemistry , polymerization , composite material , engineering
Since the discovery of poly(2‐hydroxyethyl methacrylate) by Wichterle and Lim in 1960, hydrogels have been of great interest to biomedical scientists. Hydrogels are three dimensional hydrophilic polymer networks capable of swelling in water or biological fluids and retaining a large amount of fluids in the swollen state. In the last decade, hydrogels containing organophosphorus moieties were synthesized and used for proton conducting membrane, drug carriers, and scaffold for tissue engineering, pharmaceutical formulation, cosmetics, and bioseparation. One of the most versatile and rapidly developing classes of biomedical polymers is a family of polymers with a nitrogen and phosphorus backbone—polyphosphazenes. The advantage of the phosphorus–nitrogen backbone is that it can be rendered hydrolytically unstable when combined with appropriate side groups. Because of the tremendous variety of substituents that can be introduced in their structure, phosphazene polymers exhibit a very broad and sophisticated spectrum of chemical and physical properties leading to almost unlimited possibilities in the preparation of biodegradable materials Copyright © 2009 John Wiley & Sons, Ltd.