Premium
Study on the formation defect of nano imprinted optical waveguide devices and nano‐indentation detection
Author(s) -
Weng Y.J.,
Weng Y.C.,
Yang S.Y.,
Wong J.L
Publication year - 2008
Publication title -
polymers for advanced technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.61
H-Index - 90
eISSN - 1099-1581
pISSN - 1042-7147
DOI - 10.1002/pat.1164
Subject(s) - materials science , indentation , nano , waveguide , enhanced data rates for gsm evolution , optoelectronics , lithography , optics , composite material , telecommunications , computer science , physics
In this study, we try to discuss the formation defects found in the application of air‐assisted soft mold UV‐cured nano imprint lithography technology in the manufacture of optical waveguide devices, and find a solution. Meanwhile, we try to utilize the nano‐indentation technology in the material quality detection for optical waveguide devices. The results tell us that there is a corresponding relationship between the indentation hardness and procedure parameters under nano‐meter level depth. For example, the indentation tends to be harder when it is lowly loaded and shallow in depth. Closer it gets to the edge of waveguide's turning, lower the indentation hardness will be. At the same time, different exposal process results in different structural intensity. Therefore, the high structural intensity without forming defects of optical waveguide with less optical loss and better optical transmission. Copyright © 2008 John Wiley & Sons, Ltd.